Vektorraum Beispiel Essay

Ein Vektorraum oder linearer Raum ist eine algebraische Struktur, die in vielen Teilgebieten der Mathematik verwendet wird. Vektorräume bilden den zentralen Untersuchungsgegenstand der linearen Algebra. Die Elemente eines Vektorraums heißen Vektoren. Sie können addiert oder mit Skalaren (Zahlen) multipliziert werden, das Ergebnis ist wieder ein Vektor desselben Vektorraums. Entstanden ist der Begriff, indem diese Eigenschaften ausgehend von Vektoren des euklidischen Raumes abstrahiert wurden, sodass sie dann auf abstraktere Objekte wie Funktionen oder Matrizen übertragbar sind.

Die Skalare, mit denen man einen Vektor multiplizieren kann, stammen aus einem Körper. Deswegen ist ein Vektorraum immer ein Vektorraum über einem bestimmten Körper. Sehr oft handelt es sich dabei um den Körper der reellen Zahlen oder den Körper der komplexen Zahlen. Man spricht dann von einem reellen Vektorraum bzw. einem komplexen Vektorraum.

Eine Basis eines Vektorraums ist eine Menge von Vektoren, die es erlaubt, jeden Vektor durch eindeutige Koordinaten darzustellen. Die Anzahl der Basisvektoren in einer Basis wird Dimension des Vektorraums genannt. Sie ist unabhängig von der Wahl der Basis und kann auch unendlich sein. Die strukturellen Eigenschaften eines Vektorraums sind eindeutig durch den Körper, über dem er definiert ist, und seine Dimension bestimmt.

Eine Basis ermöglicht es, Rechnungen mit Vektoren über deren Koordinaten statt mit den Vektoren selbst auszuführen, was manche Anwendungen erleichtert.

Definition[Bearbeiten | Quelltext bearbeiten]

Es seien eine Menge, ein Körper, eine innere zweistellige Verknüpfung, genannt Vektoraddition, und eine äußere zweistellige Verknüpfung, genannt Skalarmultiplikation. Man nennt dann einen Vektorraum über dem Körper oder kurz -Vektorraum, wenn für die Vektoraddition die Eigenschaften

V1: (Assoziativgesetz)
V2: Existenz eines neutralen Elements mit
V3: Existenz eines zu inversen Elements mit
V4: (Kommutativgesetz)

und weiter für die Skalarmultiplikation die Eigenschaften

S1:
S2:
S3:
S4: Neutralität des Einselements, also

für alle und erfüllt sind.

Anmerkungen

  • Die Axiome V1, V2 und V3 der Vektoraddition besagen, dass eine Gruppe bildet, und Axiom V4, dass diese abelsch ist. Ihr neutrales Element heißt Nullvektor.
  • Ein Körper ist eine abelsche Gruppe mit neutralem Element (Nullelement) und einer zweiten inneren zweistelligen Verknüpfung sodass auch eine abelsche Gruppe ist und die Distributivgesetze gelten. Wichtige Beispiele für Körper sind die reellen Zahlen und die komplexen Zahlen.
  • Die Axiome S1 und S2 der Skalarmultiplikation werden ebenfalls als Distributivgesetze bezeichnet, Axiom S3 auch als Assoziativgesetz.[1][2] Dabei ist jedoch zu beachten, dass bei Axiom S2 die Pluszeichen zwei verschiedene Additionen (links die in und rechts jene in ) bezeichnen und dass bei Axiom S3 die Skalarmultiplikation assoziativ mit der Multiplikation in ist.
  • Die Axiome S1 und S2 garantieren für die Skalarmultiplikation die Linksverträglichkeit mit der Vektoraddition und die Rechtsverträglichkeit mit der Körper- und der Vektoraddition. Axiome S3 und S4 stellen zudem sicher, dass die multiplikative Gruppe des Körpers auf operiert.
  • In diesem Artikel werden im Folgenden, wie in der Mathematik üblich, sowohl die Addition im Körper als auch die Addition im Vektorraum mit demselben Zeichen bezeichnet, obwohl es sich um unterschiedliche Verknüpfungen handelt. Für wird geschrieben. Genauso werden sowohl die Multiplikation im Körper als auch die skalare Multiplikation zwischen Körperelement und Vektorraumelement mit bezeichnet. Bei beiden Multiplikationen ist es auch üblich, den Malpunkt wegzulassen. In der Praxis besteht keine Gefahr, die beiden Additionen oder die beiden Multiplikationen zu verwechseln. Die Verwendung der gleichen Symbole macht die Vektorraumaxiome besonders suggestiv. Zum Beispiel schreibt sich Axiom S1 als und Axiom S3 als .
  • Mit den beiden Trägermengen und sind Vektorräume Beispiele für heterogene Algebren.[3]
  • Einen Vektorraum über dem Körper der komplexen bzw. reellen Zahlen bezeichnet man als komplexen bzw. reellen Vektorraum.

Erste Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Für alle und gelten folgende Aussagen:

Beispiele[Bearbeiten | Quelltext bearbeiten]

Euklidische Ebene[Bearbeiten | Quelltext bearbeiten]

Ein anschaulicher Vektorraum ist die zweidimensionale Euklidische Ebene (in rechtwinkligen kartesischen Koordinatensystemen) mit den Pfeilklassen (Verschiebungen oder Translationen) als Vektoren und den reellen Zahlen als Skalaren.

ist die Verschiebung um 2 Einheiten nach rechts und 3 Einheiten nach oben,
die Verschiebung um 3 Einheiten nach rechts und 5 Einheiten nach unten.

Die Summe zweier Verschiebungen ist wieder eine Verschiebung, und zwar diejenige Verschiebung, die man erhält, indem man die beiden Verschiebungen nacheinander ausführt:

, d. h. die Verschiebung um 5 Einheiten nach rechts und 2 Einheiten nach unten.

Der Nullvektor entspricht der Verschiebung, die alle Punkte an ihrem Platz belässt, d. h. der identischen Abbildung.

Durch die Streckung der Verschiebung mit einem Skalar aus der Menge der reellen Zahlen erhalten wir das Dreifache der Verschiebung:

.

Alles zu diesem Beispiel Gesagte gilt auch in der reellen affinen Ebene.

Koordinatenraum[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Koordinatenraum

Ist ein Körper und eine natürliche Zahl, so bildet das -fache kartesische Produkt

die Menge aller -Tupel mit Einträgen in , einen Vektorraum über . Die Addition und die skalare Multiplikation werden komponentenweise definiert; für , setzt man:

und

Häufig werden die -Tupel auch als Spaltenvektoren notiert, das heißt, ihre Einträge werden untereinander geschrieben. Die Vektorräume bilden gewissermaßen die Standardbeispiele für endlichdimensionale Vektorräume. Jeder -dimensionale -Vektorraum ist isomorph zum Vektorraum . Mit Hilfe einer Basis kann jedes Element eines Vektorraums eindeutig durch ein Element des als Koordinatentupel dargestellt werden.

Funktionenräume[Bearbeiten | Quelltext bearbeiten]

Grundsätzliches und Definition[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Funktionenraum

Ist ein Körper, ein -Vektorraum und eine beliebige Menge, so kann auf der Menge aller Funktionen eine Addition und eine skalare Multiplikation punktweise definiert werden: Für und

Vektoraddition und Multiplikation mit Skalaren: Ein Vektor v (blau) wird zu einem anderen Vektor w addiert (rot, unten). Oben wird w um einen Faktor 2 gestreckt, das Ergebnis ist die Summe v + 2·w.

Забудьте про пленку, - сказал Бринкерхофф.  - Вводите ключ и кончайте со всем. Джабба вздохнул.

0 thoughts on “Vektorraum Beispiel Essay”

    -->

Leave a Comment

Your email address will not be published. Required fields are marked *